
ED 249 929

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

' PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

IR 011 353

Kurland, D. Midian; Pea, Roy D.
Children's Mental iliodels of Recursive Logo Programs.
Technical Report No. 10.
Bank Street Coll. of Education, New York, NY. Center
for Children and Technology.
Spencer Foundation, Chicago, Ill.
(83]
13p.; For related documents, see IR 011 338, IR 011
340, and IR 011 359.
Reports - Research/Technical (143)

MF01/PC01 Plus Postage.
*Computer Assisted Instruction; Computer Simulation;
Discovery Learning; Educational Research;
*Epistemology; Intermediate Grades; *Models;
Preadolescents; *Programing
*LOGO Programing Language; *Recursive Programing

ABSTRACT
A study is reported in which 7 children (2 girls and

5 boys, 11 to 12 years of age) with a year of LOGO Programming;
experience were asked to think aloud about how a LOGO procedure would
work, and then to predict by hand-simulation of the programs, what
the graphics turtle "pen" would dcaw when the program was executed.
While all children made accurate predictions for programs at the
first two complexity levels (procedures using only direct command to
move the turtle and procedures using the iterative REPEAT commandF
no child made accurate predictions for either level of complexity
involving tail recursive procedures or embedded recursive procedures.
The children's problems with explaining embedded recursion are traced
to two related sources: general bugs in their mental model for how
lines of programming code dictate the computer's operations when the
program is executed, and the particular control structure of embedded
recursive procedures. The report concludes with a brief description
of the need to teach program control structures, such as recursion,
rather than expecting children to discover them on their own.

of (Author/THC)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

U S DEPARTMENT
OF EDUCATION

NATIONAL
INSTITUTE OF EDUCATION

60 . A t tt,A ek , tit 1 , Ni I JIMA 'ION/ 1 t It1 d'S

it e iltotA

, %, ,, I. plOye

ri {

,.. I 1 , ,.,(10LtI

01.1
,

..,

i

.
.,,,..,./ I ,,tia.141NIE

-411

MI0
Li..1

I

I

4

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

10 THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC1"

Children's Mental Models of Recursive
Lo o Programs

D. Midian Kurland
Roy D. Pea

Technical Report No. 10

2

0 I
II 0 III

Childres.'s Mental Models of Recursive
Logo projonak

.
CENTER FOR CHILDREN AND TECHNOLOGY
Bank Street College of Education

fiie 610 West 112th Street
New York, NY 10025

D. Midian Kurland
Roy D. Pea

Technical Report No. 10

3

CHILDREN'S MENTAL MODELS OF RECURSIVE LOGO PROGRAMS*

D. Midian Kurland and Roy D. Pea

Introduction

The power and beauty of recursion as a development in the history of
programming languages (such as LISP and Logo) and its conceptval
importance in mathematics, music, art and cognition generally' are
widely acknowledged (Hofstadter, 1979). Less attention has been
given to the developmental problem of how people learn to use the
powers of recursive thought and recursive progr amming procedures.
Our approach to this question is influenced by several findings basic
to a developmental cognitive science, specifically, the role of mental
models in guiding learning aid problem solving, and the widespread
use of systematic, rule-guided problem-solving approaches not only
by children, adults as well (Siegler, 1981). Understanding recursive
functions in programming involves notational and conceptual problems,
the latter including problems with understanding control and data
flow. Expert programmers are guided by a valid mental model of how
program code, controls computer operations. Novices' faulty models
are adapted in response to direct instruction and feedback from their
own programming and debugging experiences, in which they reflect
upon conflicts between their current model and program behavior.

A widespread belief among computer educators is that young children
can discover the powerful ideas formally present in programming
by experimenting within a rich programming environment, as if un-
constrained by prior understandings. This belief is largely due to
Papert's (1980) popular account of Logo, a LISP-like language de-
signed for children to allow them to develop powerful ideas, such as
recursion, in "mind-sized bites)'. Many assume children can learn
recursion through self-guided explorations of programming concepts in
Logo. However, our observations of 8- to 12-year-olds indicate that
most avoid all but the simplest iterative programs, which do not

*This work was supported by the Spencer Foundation. We wish
to thank participants of a workshop at MIT's Division for Studies and
Research in Education, from Geneva and Cambridge, for provocative
discussions of these issues. Sally MacKain provided invaluable assist-
ance in running the study and providing transcripts.

require the deep ...riderstanding of control structure prerequisite for
an understanding of recursion.

In a study examining children's ability to develop recursive problem
descriptions, Anzai and Uesati? (1982) have shown how adolescents'
understandings of recursive, formulations of the factorial function is
facilitated by a prior understanding of. iteration. They demonstrate
that, for mathematics, recursion can be learned through the discovery
process by most children, particularly if they have first experimented
with iterative functions. Of their subjects who correctly identified
iterative structure in a set of problems, 64% were also _able to work
out recursive solutions to a second problem 'set, while only 33% of
the subjects who did not have prior iteration experience worked out
the recursive functions. Anzai and Uesato conclude that under-
standing recursion is aided by an understanding of iteration, but
urge caution when exteding this point

to more complex domains-AC-1 as computer programming
[since) a complex task necessarily involves many different
cognitive subprocesses, and it is not always easy to extract
from them only the part played by recursion. (p. 102)

While Anzai and Uesato focus on the insight necessary to generate a
recursive description of a math function, in programming one must
acquire that insight and be able in implement it in specific program-
ming formalisms. In addition to understanding recursion, the child
must understand the logic and terminology govetning the language's
control structure. -Adult novices have trouble with both. When
learning to program, they have great difficulty in thinking through
flow of control concepts such as Pascal's while loop construction
(Soloway, Bonar & Ehrlich, 1983) and tail recursion in SOLO, a
Logo-like language (Kahney & Eisenstadt, 1982), even after extensive
instiuction, Furthermore, Bonar (1982) finds that prior natural
language understanding of prograMming terms misleads novice pro-
grammers in' their attempt to explain how a program works. Prior
meaning is brought to the task of constructing meaning from lines of
programming code. We also expect children to be guided by their
natural language meanings in their interpretation of programming
language constructs, and by faulty mental models of flow of control
structure. Indeed, a common lament of programming instructors is
that novices have great trouble in acquiring the concept of recursion
and the ability to. use recursive formalisms in their programs.

How Recursion Works in Logo: A User's Perspective
,

If a procedure references itself when a Logo program is run, execu-
tion of that procedure is temporarily suspended and control is passed
to a co pi of the named procedure. Passing of control is active when
the programmer, e licitly directs the program to execute a specific
procedure. Howe r, when the execution of this version of the
procedure is finis d, control is automatically passed back to the
suspended proceduie, and execution resumes at the point where it
left off. Passing cif control is passive here because the programmer
did not need to slecify where control should be passed in the pro-
gram.

To understand hov recursive procedures work in Logo, it is impor-
tant to know the ollowing rules:

1. Executi in Logo programs proceeds line by line. However,
when a procedure calls another procedure or itself, this inserts all
lines of the named procedure into the executing program at the point
where the call occurred. Control then proceeds through each of
these new line$ before carrying on with the remaining lines of the
program. Thus control is passed forward to the called procedure,
and then is passed back to the calling procedure.

2. If, in the execution of a procedure, there are no further,
calls to other procedures or to itself, execution proceeds line by line
to the end of the procedure.. The last command of all procedures is
the END command. END signifies that execution of the current
procedure has been completed and that control is now passed back to
the calling procedure. Thus, END signals the completion of the
execution of one logical program unit, and directs flow of control
back to the calling procedure so the program carries on.

3. There are exceptions to the line-by-line execution rule. An
important one for recursion is the STOP command. STOP causes the
execution of the current procedure to be halted and control to be
passed back to the calling procedure. Functionally, then, STOP
means to branch immediately to the nearest END statement.

Our research focus was on how well novice programmers' mental
models of the workings of recursive procedure's took these three
central points into account.

Participants. Seven children (2 girls and 5 boys, 11 to 12 years
of age) in their second year of Logo programming participated in the
study. The children were highly motivated to learn Logo program-

-3

ming, and had averaged over 50 hours of classroom programming time
under the supervision of experienced classroom teachers knowledge-
able in the Logo language and who, by choice, followed Papert's
"discovery" Logo pedagogy (1980). All children had received in-
struction in iteration and recursion, and had demonstrated in their
classroom programming that they could use iteration and recursion in
some contexts.

Materials. Short Logo programs were constructed of procedures
that reflected four levels of complexity: (1) procedures using only
direct commands to move the turtle; (2) procedures using the itera-
tive REPEAT command; (3) tail recursive procedures; and (4) embed-
ded recursion procedures. This paper focuses on the revealing
features of children's performance at levels (3) and (4). Examples of
programs at levels (3) and (4) are (:SIDE = 80 for each):

Level 3: Tail Recursion Program

TO SHAPES :SIDE
IF :SIDE = 20 STOP
REPEAT 4 (FORWARD :SIDE RIGHT 901
RIGHT 90 FORWARD : SIDE LEFT 90
SHAPER :SIDE/2

END

Level 4: Embedded Recursion Program

TO SHAPEC : SIDE
IF :SIDE = 10 STOP
SHAPEC :SIDE/2
REPEAT 4 [FORWARD : SIDE RIGHT 901
RIGHT 90 FORWARD :SIDE LEFT 90

END

Experimental Procedure

Our choice of a method was guided by compre:iension studies that
utilize "runnable mental models" (Collins & Gentner, 1982) or simula-
tions of operations of world beliefs in response to . specific problem
inputs. Children were asked to think aloud about how a Logo proce-
dure would work, and then to hand-simulate the running of each
program line by using a turtle "pen" on paper. They were then
shown the consequences of running the program they had explained
and, if their simulations mismatched the turtle's actions, they were
asked to explain the discrepancies. Finally, one additional problem at
that level was presented.

-4

Results

All, seven children made accurate predictions for programs at the first
two complexity levels with only minor difficulties. They expressed no
problems with the recursive call of the tail recursive programs of
level 3. However, two children treated the IF statement as an action
command to tihe turtle, and another assumed that since she did not
understand the IF statement, the computer would ignore it. No child
made accurate predictions for either embedded recursion program at
level 4. The children's problems with explaining embedded recursion
may be traced to two related sources: (1) general bugs in their
mental model for how lines of programming code dictate the computer's
operations when the program is executed; and (2) the particular
control structure of embedded recursive procedures.

1. General Buss in Program Interpretation

Decontextualized interpretation of commands. Children carried
out "surface readings" of programs during their simulations. They
attempted to understand each line of programming code individually,
ignoring the context provided by previous program lines. They
stated each command's definition, rather than treating program lines
as parts of a functional structure in which the purpose of particular
lines is context-sensitive and sequence-dependent. This led to
trouble during their simulations in keeping track of the current value
of the variable SIDE, and in determining the actual order in which
lines of code would be executed. Understanding recursioi is impos-
sible without this knowledge of sequential execution. The child must
learn to ask: "How does the line I'm reading relate to what has
already happened and affect the lines to follow?" The two bugs
that follow concern an opposite tendency--an overrich search for
meaning in other program lines.

Assignment of intentionality to program code. Children often did
not distinguish the meaning of a command line they were simulating
from the meaning of command lines they expected to follow (e.g.,
lines which, if executed, would draw a BOX). For example, in
program SHAPEC, one child said of the IF statement: "If 's SIDE
equals 100 STOP. Okay, I think this will make a box that has a
hundred side." Another child at the same point said: "This makes it
draw a square."

Treating programs as conversation-like. As in understanding
conversation, and in problems encountered by the nonschooled in
formal reasoning (where beliefs about the truth of an argument's
premises are focused on rather than the validity of its form (Luria,

5

1976; Scribner, 1977)) children appropriate for problem solving any
knowledge they believe will help them to understand. In the case of
Logo program comprehension, this empirical strategy has the conse-
quence of "going beyond the information given" to comprehend the
*irking of lines of code, such as deriving implications from one code
line (e.g., an IF statement) about the meaning of another line. For
example, one child interpreted the recursive statement in SHAPEC as
having the intention of drawing a square, predicting that the turtle
would immediately draw a square before proceeding to the next com-
mand.

Overgeneralisation of natural languaje semantics. Children
interpreted the Logo commands END and STOP by natural language
analogy, leading them to believe that when the terms appear the
program completely halts. Several children concluded that SHAPEC
would not draw at 'all, since when !SIDE reaches the value of 10; the
program "stops, it doesn't draw anything." In fact, STOP and END
each passively return control back to the most recently active proce-:
dure, and drawing occurs.

Overextension of mathematical operators. Children expressed
confusion about the functions of numbers as inputs and in arithmetic
functions, such as dividing the variable value or addition of a con -II
stant to:.it, during successive procedure calls. For example, one
child explained SHAPEC this way:

if SIDE equals 10 then stop. See, instead of going all
forward 80, you Just go forward 10. Then you're gonna
stop. Then you're gonna go. Then Dine 3] I guess what
you're gonna do is keep on repeating that 2 times, so it'd
be forward about 20 instead of forward 10, forward 20 (line
4), and you're gonna repeat 4, so it'd be forward 80 be-
cause it says repeat 4 forward side.

Numbers were also often pointed to as the mysterious source of
discrepancies between the child's predictions and the results of
program execution.

2. Mental Model of Embedded Recursion as Looping

The children were fundamentally misled by thinking of recursion as
looping. While this mental model is adequate for active tail recursion,
it will not do for embedded. recursion, which requires an understand-
ing of both active and passive flow of control. The most pervasive
problem for all children was this tendency to view all forms of recur-

9

sion as iteration. For example, one child explained the recursive call
in program SHAPEB in the following manner:

[the child explained what the first four lines did, then
said Line 5 tells it to go back up to SHAPE, tells it to 10
back up and do the process called SHAPEB, this is the
process (points to lines 2-41. It loops back up, and. it

__divides SIDE by 2 so then' SIDE becomes 40... (carries on
explaining correctly that the procedure will draw two
squares) .

In this example, the child clearly views tail recursion as a form of
looping, rather than as a command to suspend execution of the cur-
rently executing procedure 'and pass control over to a new version of
SHAPEB. in this case his wrong model leads to the right
prediction, so h is not compelled to probe deeper into what the
procedure is doing. This same child explained that SHAPEC

checks to sle if SIDE 80 equals 10. If it does, end the
program. text, line 3 (the recursive call) tells it to so
back to the beiOning except to divide SIDE by 2 which
ends up with 40. Then it goes down there (line 2J checks
to see if SIDE is 10... (then] back to the beginning...
(continues to loop back until SIDE equals 10 then) checks
to see if it equals 10, it does, stops. Okay, a little extra
writing there (points to lines 4 and 5. Draws a dot in the
paper to indicate his prediction of what the procedure will
do and comments] and that is about as far as it goes be-
cause it never gets past this SHAPE (line 3j. It is in a
lop which means it cannot get past 'cause every time it
gets. down there (line 31, iLloofpLimcLicu.

This time the child's explanation and prediction were incorrect, since
SHAPEC makes the turtle draw a series of three squares in a line,
each tifrice as big as the previous one. The child expressed complete
bewilderment when the procedure was executed, and could offer no
explanation to account for the discrepancies. On -the second program
of this type, which draws three squares of different sizes inside one
another, the child worked down to the recursive call and then said:

Um. Wait a minute. I don't understand this. Well any-
way, from past experience, like just now, I guess it's not
going to listen to that command [points to the recursive
call] and It's going to go past it, and it's going to [draw a
square] and I guess its goint to end then.

-7-
10

-Kgain, when the procedure was run and the child saw he was wrong,
he expressed confusion but, instead of looking for an error of under-
standing, he. asked:

Is this the same language we used last year? Because last
year if you said SHAPE, if you named the program in the
middle of the program, would go to that program. We
did that plenty of times, but it's not doing that here. I
don't know why."

The child blamed the language for not conforming to his expecta-
tions but, in ;so doing, he indicated that at some level he knew the
correct meaning of a recursive tall: "It would go to that program."
However, when he worked through a program, his simpler, and in
many cases, successful looping model prevailed.

Discussion and Conclusions

We believe these findings are important because they reveal that the
children's conceptual bugs in thinking about the functioning of re-
cursive computer programs are systematic in nature, and are the
result of weaker theories that do not correspond to procedural compu-
tation in Logo.

These findings also imply that, just as in the case of previous work
with adults, programming constructs often do nct allow mapping
between the meanings of natural language terms and their corre-
sponding programming language uses. Neither STOP nor END stop or
end but, rather, pass control back. This is important for Logo
,novices because, when their mental models of recursion as looping
fail, they have no way of inferring from the syntax of recursion in
Logo how flow of control does work. So they keep their inadequate
looping theory, based on their successful experience' with it for tail
recursion, or blame discrepancies between their predictions and the
program's outcomes on mysterious entities, such as numbers or the
"demon" inside the language itself. Thus, an important issue of a
developmental theory of programming is: How do inadequate mental
models get transformed into better ones?

For a developmental psychology of progiamming, we require an ac-
count of the various factors that contribute to the learning of central
computational concepts. So far, efforts to help novices learn pro-
gramming languages through utilizing programming tutors or assist-
ants have bypassed what we consider to be some of the key factors
contributing to novices' difficulties in working with computational for-
malisms. We have found these to involve atomistic thinking about how

programs work; assigning intentionality and negotiability of meaning,
as in the case of human conversations, to lines of programming code;
and applying natural language semantics to programming commands.
In studies now under way, it appears that none of these sources of
confusion will be intractable to instruction, although 'their perva-
siveness in the absence of instruction, contrary to Papert's idealistic
individual "Piagetian learning," suggests that self-guided discovery
needs to be mediated within an instructional context.

References

Anzai, Y., & Uesato, Y. Learning recursive procedures by middle-
school children. Proceedings of the Fourth Annual Conference
of the Cognitive Science Society, Ann Arbor, MI, August 1982.

Boaar, J. 'Natural problem solving strategies and programming lan-
guage constructs. Proceedings of the Fourth Annual Conference
of the Cognitive Science Society, Ann Arbor, MI, August 1982.

Collins, A., la Gentner, D. Constructing runnable mental models.
Proceedings of the Fourth Annual Conference of the Cognitive
Science Society, Ann Arbor, MI, August 1982.

`N.

Hofstadter, D. R. Godel, Escher and Bach: An eternal golden braid.
New York: Vintage Books, 1979.

Kahney, H.,- & Eisenstadt,' M. Projrammers' mental models of their
programming tasks: The interaction ofi real-world knowledge and
programming knowledge. Proceedings of the Fourth'Annual
Conference of the Cognitive Science Society(, Ann Arbor,i MI, Or,

August...4982.

Luria, A. R. Cognitive development. Cambri
University Press, 1976..

MA: Harvard

Papert, S. Mindstorms. New York: Basic Books, 1980.

Scribner, S. Modes of thinking and ways of speaking: Culture and
logic reconsidered. In P. N. Johnson-Laird & P. C. Wason
(Eds.), Thinking. Cambridge, Englanl: Cambridge University
Press, 1977.

Siegler, R. S. Developmental sequences within and between con-
cepts. Monographs of the Society for Research in Child Devel-
2pment, 1981, 46 (Serial No. 189).

Soloway, E., Sonar, J., & Ehrlich, K. Cognitive strategies and
'roping constructs: An empirical study. Comm. ACM, 1983. In
press.

13
(

. - 10 -

